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Classification of First-Episode Schizophrenia,
Chronic Schizophrenia and Healthy Control

Based on Brain Network of Mismatch
Negativity by Graph Neural Network

Qi Chang, Cancheng Li , Graduate Student Member, IEEE, Qing Tian , Qijing Bo , Jicong Zhang ,
Yanbing Xiong, and Chuanyue Wang

Abstract— Mismatch negativity (MMN) has been consis-
tently found deficit in schizophrenia, which was considered
as a promising biomarker for assessing the impairments
in pre-attentive auditory processing. However, the func-
tional connectivity between brain regions based on MMN
is not clear. This study provides an in-depth investigation in
brain functional connectivity during MMN process among
patients with first-episode schizophrenia (FESZ), chronic
schizophrenia (CSZ) and healthy control (HC). Electroen-
cephalography (EEG) data of 128 channels is recorded
during frequency and duration MMN in 40 FESZ, 40 CSZ
patients and 40 matched HC subjects. We reconstruct the
cortical endogenous electrical activity from EEG recordings
using exact low-resolution electromagnetic tomography
and build functional brain networks based on source-level
EEG data. Then, graph-theoretic features are extracted from
the brain networks with the support vector machine (SVM)
to classify FESZ, CSZ and HC groups, since the SVM has
good generalization ability and robustness as a universally
applicable nonlinear classifier. Furthermore, we introduce
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the graph neural network (GNN) model to directly learn
for the network topology of brain network. Compared to
HC, the damaged brain areas of CSZ are more extensive
than FESZ, and the damaged area involved the auditory
cortex. These results demonstrate the heterogeneity of the
impacts of schizophrenia for different disease courses and
the association between MMN and the auditory cortex. More
importantly, the GNN classification results are significantly
better than those of SVM, and hence the EEG-based GNN
model of brain networks provides an effective method for
discriminating among FESZ, CSZ and HC groups.

Index Terms— Classification, functional brain
connectivity, graph neural network, mismatch negativity,
schizophrenia.

I. INTRODUCTION

COGNITIVE impairment is considered to be a core
symptom of schizophrenia, that should be taken into

consideration along with other negative and positive core
symptoms [1]. Cognitive functions include advanced infor-
mation processing functions as well as elementary sensory
functions, including auditory functions. Mismatch negativity
(MMN) is an event-related potential (ERP) that reflects the
pre-attentive auditory processing capability [2]. One key con-
clusion of the initiative for Cognitive Neuroscience Treatment
Research to Improve Cognition in Schizophrenia (CNTRICS)
is that MMN, as an electrophysiological indicator, is one of the
most promising schizophrenia biomarkers [3]. Moreover, pre-
vious studies have found MMN deficits in patients with first-
episode schizophrenia (FESZ) [4], [5], chronic schizophrenia
(CSZ) [6], [7] and ultra-high-risk (also known as clinical-risk)
subjects [8], [9].

Auditory MMN is induced by the oddball paradigm, which
consists of a series of repeated identical standard stimuli
with a few randomly dispersed deviant stimuli [10]. The
deviant stimuli differ from the standard ones in physical
characteristics, particularly in frequency and duration. While
both stimulus types have been extensively studied, there is
no clear consensus on the differences between the two types
in patients with FESZ and CSZ, and healthy control (HC).
In a recent study [11], a literature survey was conducted
on whether duration MMN and frequency MMN were sig-
nificantly reduced in the first-episode schizophrenic patients
compared to healthy subjects. The review has shown that
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most studies have demonstrated a significant reduction of the
duration MMN in FESZ patients, but no studies found reduc-
tion in the frequency MMN. Moreover, a previous study [12]
showed larger changes in the duration MMN than in the
frequency MMN. The afore-mentioned findings may indicate
that the duration MMN is more sensitive than the frequency
MMN in differentiating between schizophrenic and healthy
subjects. Therefore, understanding the neural mechanism of
MMN damage in different schizophrenic stages is helpful to
understand the disease progression process of schizophrenic
patients, and it can also help to understand the differences of
different deviations.

The MMN signals are essentially generated in brain regions
within the bilateral supratemporal cortex [13]–[15] and the
frontal lobe [14], [16]–[18]. In recent years, there is a mature
hypothesis about the mechanism of MMN generation called
predictive coding [19], [20]. The hypothesis of predictive
coding suggests that the inferior frontal gyrus (IFG) processes
the next auditory signal according to the auditory memory
template formed by repeated standard stimuli in the superior
temporal gyrus (STG), and STG will send out the prediction
error signal to IFG when deviant stimuli are introduced.
schizophrenic patients exhibited disorders of functional inter-
actions between brain regions [21], as well as cognitive
impairments [22]. There are numerous research papers on
schizophrenia resting-state functional connectivity. A recent
review [23] summarized the significantly different connections
in the FESZ and CSZ groups compared to the HC based on
resting state functional MRI, and concluded that 90% affected
regions in FESZ involves frontal lobes, while differences
in CSZ are more extensive. In a study [24] that reviewed
functional and structural neuroimaging studies using task or
resting-state in ultra-high risk, FESZ, and CSZ stages of
schizophrenia, it was shown that schizophrenia is associated
with connectivity reductions compared with HC, which is
particularly evident in the frontal lobe and applies to all stages
of schizophrenia.

The functional brain network based on resting state
functional magnetic resonance imaging (fMRI) found that
the connectivities involved auditory cortex of schizophrenia
patients were abnormal, and the additional model using MMN
variables as covariates showed that the abnormal connectivi-
ties of frequency MMN are mainly limited to the auditory
cortex, while the connection abnormality of duration MMN
is more diffuse [25]. Dima et al. [26] used dynamic causal
models based on magnetoencephalography (MEG) data of
frequency MMN and studied abnormal intrinsic and extrinsic
connectivities in the primary auditory area (A1), STG and
IFG in schizophrenia. The results suggest that the local neu-
ronal adaptation of the auditory cortex has been impaired in
patients with schizophrenia, and its connection to the higher-
order cortex has been also damaged. Koshiyama et al. [27]
analyzes abnormal effective connectivity based on MMN in
schizophrenia, and the results showed that the dynamic inter-
action between temporal and frontal sources is the basis of
MMN abnormality in schizophrenia. However, differences in
brain region connectivities between the FESZ, CSZ and HC
groups have not been addressed. Furthermore, it was found that

different types of deviant stimuli can activate specific brain
regions that are few millimeters apart [13], [28]. However,
the brain region connectivity patterns for different deviant
stimuli in the FESZ, CSZ and HC groups are not clear.

A high-performance computer-aided schizophrenia diag-
nosis system can be useful as a clinical decision-support
tool. The diagnosis of schizophrenia is of great significance,
and diagnosis based on electroencephalogram (EEG) is par-
ticularly convenient and of low-cost. EEG as an auxiliary
diagnostic method for schizophrenia, preliminary approaches
for schizophrenia diagnosis exploited resting-state EEG sig-
nals. Besides, schizophrenia diagnosis has also been achieved
using task-related EEG signals analysis methods such as
P300 [29], [30], press button task [31], [32], and the work-
ing memory analysis [33]. To be specific, many researchers
explored different features for schizophrenia diagnosis using
EEG signals like the time-domain features, frequency-domain
features, and combinations of these features [34]–[36]. Many
classifiers have been exploited for schizophrenia diagnosis
including support vector machines (SVM) [29], [30], linear
discriminant analysis (LDA) [37], [38], and convolutional
neural networks (CNN) [39], [40].

Most of the existing methods for schizophrenia diagnosis
employ sensor-level EEG signals [35], [39]. The correspond-
ing source-space signals are obtained through inversion of the
sensor-level EEG signals along with the exploitation of the
anatomical prior information, which reflects the local neural
activities in the cortex with a satisfactory spatial resolution.
Source-space features could then be extracted to improve the
classification accuracy [30]. In addition, the realization of the
brain functions depends on the information communication
and integration among the brain regions. This motivates the
investigation of brain disorders based on functional brain net-
works (or graphs). However, neural-network classifiers (such
as the CNN ones) cannot be directly applied to graph data,
which is defined by nodes and edges. Recently, GNN has been
proposed as an adaptation of classical deep learning models
for graph data [41], [42]. This type of neural networks success-
fully models the rich dependencies among nodes in a graph.
Various GNN applications have been developed to solve the
problems of natural and social sciences [43]–[45]. These appli-
cations demonstrate convincing performance and high inter-
pretability of GNNs. Therefore, we introduce a graph neural
network (GNN) model to effectively learn the topological
structure of source-space brain networks in order to boost the
state-of-the-art performance in early schizophrenia diagnosis.

In summary, in order to address the issues in brain func-
tional connectivity based on MMN and in existing methods to
identify schizophrenia, the main contributions of this paper
are as follow. First of all, we construct source-level brain
connectivity based on dense-array EEG data of both frequency
and duration deviant stimuli MMN and identify the differences
in brain connectivity between the FESZ, CSZ and HC groups.
This provides evidences for exploring the neural mechanism
of MMN damage in different stages of schizophrenia and
reveals the connectivity patterns of different deviant stimuli
in the FESZ, CSZ and HC groups. Furthermore, we develop
a novel framework for early recognition of schizophrenia,
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Fig. 1. Flow chart of this study. The work flow of the system is three parts. Firstly, MMN recording of two kinds of deviant stimuli is collected
from first-episode schizophrenia patients, chronic schizophrenia patients, and healthy control. Secondly, two approaches are used to construct brain
network from frequency domain and time domain. Thirdly, a graph neural network (GNN) is constructed for diagnosis, which takes both brain network
and the demographic information as input, and generate the potential category of a patient.

specifically, GNN is introduced to learn the network topology
of brain networks in the source space, which could better
obtain the complex relationships in the MMN disorder mech-
anism of schizophrenia. Moreover, the cognitive features of
the MATRICS Consensus Cognitive Battery (MCCB) and
sensor-level features of amplitude and latency of MMN are
introduced to be combined with the electrophysiological fea-
tures to assist classification. Besides, we also utilize the SVM
to learn global and local features based on graph theory for
the brain networks and compare it with GNN classifier in
performance. It is worth mentioning that we detect FESZ
from CSZ and HC in this paper, which could help effectively
identify schizophrenia in the early stage. The flow chart of our
study is shown in Fig. 1.

II. MATERIALS AND METHODS

A. Participants and EEG Recording

The dataset used in this study consist of 40 FESZ, 40 CSZ
and 40 age-, gender- and education- matched HC subjects.
An auditory oddball paradigm based on frequency and dura-
tion deviant stimuli on the subjects has been performed.
The details of the dataset and paradigm are available in
Supplementary Materials and in [46].

The EEG data was recorded by a 128-channel monitoring
device manufactured by Electrical Geodesics, Inc. with the
Cz site as the reference. The impedance of each electrode
was controlled to be below 5k� and the sampling rate was
1000 Hz. The collected data was bandpass filtered from 0.1 to
100 Hz. Subjects were seated in comfortable backrest seats in
an electromagnetically-shielded room with appropriate lights
and no noise. For the auditory experiments, participants were
asked to stare at a black cross in the center of the screen,
which was about 50 cm in front of them.

B. Preprocessing

Preprocessing of the EEG data was performed in MATLAB.
The data was filtered by a bandpass filter with a pass band
of 0.1-40 Hz, and then the filtered data was re-referenced
to its average value. Electrooculogram (EOG) artifacts were
removed through the independent component analysis (ICA)
algorithm. Bad electrodes were also detected and removed.
Each event-related potential (ERP) trial was inspected manu-
ally and the ones which contained artifacts were also removed.

Each ERP segment was extracted starting from 100 ms
before the onset of the stimulus to 500 ms after the stimulus
presentation where the first 100-ms interval was used as a
baseline correction. After averaging the trials with the two
kinds of deviant stimuli, the standard-stimulus trial waveforms
were subtracted to obtain two types of MMN waveforms. For
each segment, the MMN component was identified as the
maximum negative peak between 100 ms and 250 ms after
the stimulus onset, which was used for subsequent analysis.

C. Construction of Brain Networks

The EEG is a microvolt-level superimposed electrical signal
that is generated by many neurons in the cortex and dis-
charged to the scalp through the uneven impedance of the
skull. The accuracy of EEG measurement and superposition
is not conducive to our analysis of the activity within the
cortex. Therefore, the exact low-resolution electromagnetic
tomography (eLORETA) intra-brain signal source-imaging
method was used to first restore and map the intracortical
EEG source signals, which were then used to construct and
analyze the brain networks [47], [48]. The above preprocessing
may lead to interference from non-MNN signals. To prevent
this undesirable interference, we used the segments between
100-250 ms after the stimulus onset to reconstruct the cortical
endogenous time series using eLORETA. The central voxels
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of the 80 AAL-based brain regions [47], [49] were selected as
nodes of the functional network where each hemisphere has
40 regions, and the coordinates of each node are included
in the appendix. Two approaches for constructing a brain
network were followed. One approach is based on the par-
tial correlation (PC) coefficient, which measures the linear
correlation between each two nodes using the amplitude and
phase information. The other approach is based on the phase
lag index (PLI), which is a measure of the asymmetry of the
distribution of the phase difference between signal pairs. Com-
pared to other phase synchronization measures, this measure is
much less affected by volume conduction and active reference
electrodes. When applying PLI, we filtered MMN into four
frequency bands, namely delta (1.5-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz) and beta (13-30 Hz). Further details of partial
correlation and phase lag index are given in Supplementary
Materials.

Besides, brain networks of the three groups (FESZ, CSZ
and HC) were compared, and connectivities with significant
differences were extracted by the permutation test (p<0.01).

D. Classification

1) The Support Vector Machine (SVM) Classifier: The afore-
mentioned features were used to train and test a SVM classifier
to differentiate between the FESZ, CSZ and HC subjects.
The SVM classifier can be equipped with kernel functions
of different types. In this paper, we employed a SVM with
a radial basis function (RBF) [50] since this kernel function
can map the input features to a higher-dimensional space with
fewer parameters and better performance for both large and
small numbers of samples. The exploited features (or char-
acteristics) can be divided into four groups: demographic
characteristics, MCCB, ERP performance, and brain network
characteristics. Firstly, the demographic characteristics are
three in total, namely age, years of education, and intelligence
quotient (IQ). Secondly, the MCCB has 8 characteristics,
including seven assessment scores and one overall composite
score. Thirdly, the ERP performance characteristics are 4,
namely the amplitude and latency of MMN. Finally, the brain
network characteristics can be computed for the construction
based on the partial correlation coefficient or that based on
the PLI. In particular, local and global network parameters
were computed to measure the characteristics of the built
networks. Among them, global parameters include global
efficiency, global clustering coefficient and the characteristic
path length. As for the characteristics of the node as local
parameters, considering that many nodes have a value of
zero in betweenness centrality [51] and it not conducive
to learning and classification, closeness centrality [52] was
selected to characterize the stability of the node in the network.
The calculation formula of the brain network parameters was
shown in the Supplementary Materials.

Thus, for each of these two constructions, we calculated
the same set of features: the characteristic path length (1),
the global efficiency (1), the global clustering coefficient (1)
and the closeness centrality for each node (80). This gives
a total of 83 features. Considering that too many features
will lead to overfitting of the classification model, we used

factor analysis to reduce the dimensions of 83 brain network
features in each training, retaining the factors with eigenvalue
above 1 [53]. SPSS 22 software was used for factor analysis.

Therefore, there are 10 conditions for classification: four
frequency bands (alpha, beta, theta and delta) during the
PLI-based network construction and one partial-correlation-
based network without frequency-band filtering in frequency
MMN and the duration MMN, respectively. For each con-
dition, there are 3 demographic characteristics, 8 MCCB
parameters, 2 ERP and 3∼21 brain network features (the
number of brain network features in each condition was shown
in Table. A.1 of Supplementary Materials).

2) The Graph Convolutional Neural Network (GCNN) Clas-
sifier: Convolutional neural networks (CNNs) have a lot
of remarkable applications and significant breakthroughs in
video, image and sound recognition problems [54]. The
success of CNNs could be attributed to their hierarchical
structures, which enable them to extract and integrate multi-
scale features from data in the Euclidean domain. Data in non-
Euclidean domains (e.g. social networks, gene data, and brain
networks) could be encoded by graphs, which not only include
quantified elements, but also the relationships among them.

The GCNNs can effectively combine data-driven
approaches with graphical models. Apart from traditional
graphical models (such as the Markov random field model),
GCNNs could create sophisticated feature representations
for high-level automated reasoning. Moreover, GCNNs
demonstrate higher scalability to big data and better capacity
for inference based on multiple graphs.

In this paper, a graph is denoted as G = (V , E, A),
where V and E are, respectively, two sets of vertices and
associated edges, while A denotes a weighted adjacency
matrix. Let the number of vertices be n, i.e., |V | = n.
The dataset of schizophrenic and healthy subjects is denoted
as D = {(Gn, In , yn)|n = 1, 2, 3 . . . N}, where N is the
number of graphs (or observations), Gn denotes the nth
graph, In denotes some quantitative indexes, such as the
age, the state of education, etc., and yn is the label of
the nth graph, which is the ground-truth diagnosis for Gn .
The schizophrenia diagnosis problem is thus cast as the prob-
lem of learning optimal trainable parameters θφ for a GCNN
φ

(
Gn, In; θφ

)
that maps each graph Gn to the corresponding

label yn . The training process seeks to minimize a loss function
L = loss(φ

(
Gn, In; θφ

)
, yn), where loss(·) is a cross-entropy

function in this work.
The GCNN architecture has essentially two stages. In the

first stage, graph features are extracted by hierarchical
graph convolution and graph pooling. In the second stage,
the extracted features are used in combination with other
quantitative indexes to train and test a traditional neural
network that outputs the predicted graph labels. In fact, the two
GCNN stages are jointly and alternately optimized.

Convolutional layers in the GCNN architecture are trained
to extract representative features. In this work, the graph
convolution is carried on by the Chebyshev spectral graph
convolution operator (ChebConv) [55]. This operator uses the
Chebyshev expansion method to simplify the approximation
of the graph Laplacian and repeatedly performs filtering in
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the ChebConv layer. By using both node features and edge
weights, useful information is extracted and learnt by the
convolution layers. As well, pooling is an important operation
for avoiding overfitting and reducing information redundancy
and noise. In this work, graph pooling is realized by Top-
KPooling [56], a pooling operation that could reduce the input
graphs. For an n-node graph, the number of remaining nodes
after graph pooling can be denoted as kn, where k is called
the pooling ratio and k ∈ (0, 1]. These remaining nodes
are selected by a learnable projection operator p. Suppose
Xin ∈ Rn× f , and Ain ∈ Rn×n are, respectively, the node
feature and adjacency matrices, and f is the number of
features for each node. Features are normalized as z = Xin p

||p|| ,
where || · || denotes the L2 norm. The top k indexes of
the selected nodes are denoted as i = T opK (z, k). Hence,
the remaining node features are Xout = (Xin ⊗ tanh(z))i ,
where the symbol ⊗ denotes element-wise multiplication,
and Aout = (Ain)i,i . By the TopKPooling operation, nodes
with the most representative features could be selected for
subsequent learning steps.

After repeated graph-based operations, the resulting node
features could be considered as a compressed and refined
representation of the original graph. These features are then
reshaped as a vector and fed to a fully-connected (FC) layer,
whose output is concatenated with quantitative indexes (such
as the age, the state of education, etc.) and then classified
by a fully-connected neural network. The GCNN architecture
adopted in this paper is shown in Fig. 1. The GCNN archi-
tecture was optimized by the Adam optimizer, with a learning
rate of 5 × 10^(−4), an iteration count of 700 epochs, and
a ratio of the top-k pooling of 0.5. The GCNN model is
essentially constructed as the traditional CNN models where
the convolution and pooling are stacked alternately, in order
to extract and refine useful features.

Taking into account the size of the collected dataset, training
of both SVM and GNN was performed following a five-
fold cross-validation scheme. That is, the data samples were
divided into 5 folds. For each fold, the number of subjects
from each of the three classes (FESZ, CSZ and HC) was the
same. One fold (24 samples) and the other four folds (a total
of 96 samples) was used for testing and training respectively.
So, the training was repeated five times, and the average testing
performance over these five runs was used as the result of
the five-fold cross-validation scheme. Each possible feature
combination was explored randomly for ten times of the five-
fold cross-validation. The performance for each experiment
was evaluated using four metrics: precision, recall, accuracy
and F1-score [57]. To adequately demonstrate the numbers of
false positives (FP) and false negatives (FN), a contingency or
confusion matrix (CM) was created for each classifier. In such
a matrix, elements on the diagonal are the numbers of correctly
classified samples, and off-diagonal elements are the numbers
of wrongly predicted samples. From the CM, the FP and FN
counts of each category could be clearly displayed.

III. RESULTS

First, MMN components were extracted from EEG signals
for the FESZ, CSZ and HC groups. Then, these components

Fig. 2. Typical EEG signals and grand-average ERP waveforms of
first-episode schizophrenia (FESZ), chronic schizophrenia (CSZ) and
healthy control (HC).

were reconstructed using eLORETA to obtain PC-based and
PLI-based brain networks at the source level. Pairwise compar-
isons of the brain connectivity of the three groups show sig-
nificantly different connectivity (p<0.01). T Graph-theoretic
features of the brain networks of the FESZ, CSZ and HC
groups were extracted and used for SVM classifier training
and testing, while the GNN classifier was directly trained and
tested on the brain networks. For each classifier and feature
combination, the results of 10 repetitions of a five-fold cross-
validation scheme were averaged.

Demographic characteristics and MMN amplitudes of
FESZ, CSZ and HC are summarized in Table I. Typical EEG
signals and grand-average event-related potential waveforms
of FESZ, CSZ and HC during duration MMN and frequency
MMN are shown in Fig. 2. In our work, the ERP results
showed that the amplitudes of both the frequency and duration
MMN had significant differences between the FESZ and CZ
groups (p < 0.001), and between the CS and HC groups
(p < 0.001). There was a significant difference between the
FESZ and HC groups for the duration MMN (p = 0.048) but
not for the frequency MMN (p = 0.269).

For the three subject groups (FESZ, CSZ and HC), pairwise
comparisons of the frequency MMN brain networks were
performed. Similar comparisons were made for the duration
MMN brain networks. Fig. 3 shows the significant differ-
ences in brain connectivities between group pairs for partial-
correlation-based brain networks.

The results for the duration MMN showed that 29 functional
connectivities were significantly different in the FESZ group
compared to the HC one (Fig. 3-A1), and the main brain
regions involved were the superior frontal gyrus and the medial
part. The CSZ group was found to have 28 significantly
different connectivities compared to the HC group (Fig. 3-A3).
Involved brain regions included mainly the precentral gyrus,
the media orbitofrontal cortex, the Heschl gyrus (HES), and
the insula. For the FESZ and CSZ group pair during the
duration MMN, 29 significantly different functional connec-
tivities emerged (Fig. 3-A2). The main involved brain regions
included the fusiform gyrus, the inferior frontal gyrus (parts
triangularis), the precuneus, the superior occipital gyrus, the
superior frontal gyrus, and the middle temporal gyrus.
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TABLE I
DEMOGRAPHIC CHARACTERISTICS, DRUG TREATMENT AND MMN AMPLITUDES OF FIRST-EPISODE

SCHIZOPHRENIA, CHRONIC SCHIZOPHRENIA, AND HEALTHY CONTROL

Fig. 3. The significantly different connectivities (p<0.01) between brain
regions during the frequency and duration MMN for pairs of first-episode
schizophrenia (FESZ), chronic schizophrenia (CSZ) and healthy control
(HC). The size of a node is directly proportional to its betweenness
centrality. The brain areas are represented by different node colors: red
for the frontal lobe and central region; fuchsia for the temporal lobe;
mazarine blue for parietal lobe; wathet for the occipital lobe; yellow for
the insula; green for limbic lobe. The brain networks A1-A3 are built for
the duration MMN while the B1-B3 ones are for the frequency MMN. The
detail parallelism between abbreviations and the corresponding brain
regions is given in Supplementary Table A.2. The connectivities was
displayed by BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

The results for the frequency MMN showed that there
were 17 functional connectivities with statistically significant
differences between the FESZ and HC groups (as shown
in Fig. 3-B1) and the functional connectivities of the FESZ
group were generally weaker than those of the HC group.
The most relevant brain regions were the anterior cingulate
cortex, the media orbitofrontal cortex, the lingual gyrus, the
superior frontal gyrus, and the inferior frontal gyrus (parts
triangularis). Compared with the HC group, the CSZ group had
62 significantly different functional connectivities (Fig. 3-B3),

Fig. 4. The significantly different connectivities of brain networks
constructed by the phase lag index during the frequency and duration
MMN of delta, theta, alpha and beta band for pairwise comparisons of
first-episode schizophrenia (FESZ), chronic schizophrenia (CSZ), and
healthy control (HC).

and the involved regions included parts of the temporal lobe
(such as the inferior, superior, and middle temporal gyri,
as well as the fusiform gyrus), the frontal lobe (the superior
and middle frontal gyri), the anterior cingulate cortex, the
angular gyrus, and the lingual gyrus. Compared with the
CSZ group, the FESZ group had 30 significantly different
connectivities among brain regions during the frequency MMN
as shown in Fig. 3-B2. The involved brain regions were mainly
the temporal lobe (the inferior, superior, and middle temporal
gyri, as well as the temporal pole, and the fusiform gyrus),
the frontal lobe (the middle and inferior frontal gyri, the orbital
part, and the parts triangularis), the insula, and the limbic
lobe (the olfactory gyrus, as well as the anterior and posterior
cingulate cortex).

More detailed information of the regions in Fig. 3 is
shown in the appendix, in which regions involved in the top
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Fig. 5. Results of four performance indicators (accuracy, recall, precision and F1-score) for classifying the FESZ, CSZ, and HC patterns by the
GNN and SVM classifiers, respectively. Charts for the GNN and SVM classification results are shown on the left and right sides of each dashed line,
respectively. PC: partial correlation; FESZ: first-episode schizophrenia; CSZ: chronic schizophrenia; HC: healthy control.

TABLE II
ACCURACY (%) FOR CLASSIFYING FIRST-EPISODE SCHIZOPHRENIA,

CHRONIC SCHIZOPHRENIA AND HEALTHY SUBJECTS

BY SVM AND GNN CLASSIFIERS

35 significantly different connectivities according to P-value
from large to small between CSZ and HC based on duration
MMN are shown in appendices Table A.3. And all regions
involved in Fig.3 are shown in appendices Table A.4 according
to the betweenness centrality from large to small.

Fig. 4 shows the significantly different connectivities of the
brain networks, which were constructed by measuring the
phase lag index between the brain regions during the frequency
and duration MMN of the delta, theta, alpha and beta bands
for pairwise comparisons of the FESZ, CSZ and HC groups.

For different frequency bands and deviant stimuli,
the following trend consistently occurs for the number
of significantly different connectivities between groups:
CSZ vs. HC > FESZ vs. HC < CSZ vs. FESZ. In other
words, the FESZ and CSZ groups have more significantly
different connectivities than the HC one. This suggests a
large difference in the brain functions between schizophrenia
patients and healthy subjects. The CSZ-versus-HC group pair
has the largest number of significantly different connectivities
in the delta band of the duration MMN, which involves
a wide range of brain regions that diffuse throughout the
cerebral cortex (See Fig. 4-C5). The FESZ-versus-HC group
pair has larger numbers of significantly different connectivities
in the following cases compared to other cases: the alpha
and beta bands in the frequency MMN, and the delta band

in the duration MMN. The number of significantly different
connectivities for the CSZ-and-FESZ pair is small compared
to the other two pairs.

For each experimental configuration, ten test runs were
performed with a 5-fold cross-validation scheme. The classifi-
cation results were recorded and evaluated using the accuracy,
recall, precision, and F1-score, as summarized in Fig. 5. The
specific values of these features are shown in Table A.5-8 of
Supplementary Materials.

The GNN classification accuracy was statistically signifi-
cantly higher (p<0.001) than that using SVM for all experi-
mental configurations. The average and the standard deviation
of the accuracy for each configuration are given in Table II.
The highest-accuracy configuration is the GNN one in which
brain networks are constructed based on the delta band of
the duration MMN. Nevertheless, GNN-based results for other
frequency bands of the duration MMN also provided compa-
rable performance outcomes that exceed those of the partial-
correlation networks.

From the performance under different deviant stimuli sig-
nals, the classification results based on the duration MMN
are consistently higher than those based on the frequency
MMN. In addition to the accuracy, the other three performance
indicators (recall, precision, and F1-score) show similar trends
for the experimental configurations.

The CM results of the SVM and GNN for classifying the
FESZ, CSZ and HC are demonstrated in Fig.6. The numbers in
each CM are obtained by summing the results of 10 repetitions
of 5-fold cross-validation experiments. Figure 6 shows that
the performance of the GNN algorithm is better than that
of the SVM one for both the duration and frequency deviant
stimuli. The GNN classifier with duration MMN shows better
performance than that with frequency MMN under the same
conditions.

IV. DISCUSSION

In this study, functional brain networks based on MMN
signals were first constructed for the FESZ, SCZ and HC
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Fig. 6. Confusion matrixes as results of 10 times repeated 5-fold cross-
validation experiments for classifying schizophrenia (FESZ), chronic
schizophrenia (CSZ) and healthy control (HC) by the GNN and SVM
classifiers, respectively. In each confusion matrix, the row represents true
labels and the column represents predict labels. To be specific, the row
of confusion matrix contains 40 true samples of one class (5 × 8 test
samples in each 5-fold cross-validation). dMMN: duration MMN; fMMN:
frequency MMN; PC: partial correlation.

groups. The groups can be differentiated by differences in
connectivity patterns for the constructed networks. A novel
GNN classifier was trained on the brain network structures to
identify the FESZ and CSZ groups and distinguish them from
the HC one. Alternatively, the SVM classifiers were trained
on graph-theoretic features of the brain networks. In addition,
differences in connectivities between regions were examined
in four frequency bands (theta, beta, alpha and delta) and two
types of deviant stimuli among pairs of the FESZ, CSZ and
HC groups.

The trend of the differences between groups is consistently
shown in the ERP components and the partial-correlation-
based brain networks. For the frequency MMN, the damage
of the connections between brain regions in the CSZ group
is more severe than that in the FESZ group. The CSZ group
has a higher number of connections compared to the FESZ
and HC groups. This intuitively shows that the CSZ group
exhibits a strong contrast with the other two groups for the
frequency MMN. The results also suggest that the impaired
brain functions in the CSZ group are significantly more severe
than those in the FESZ group. This conclusion is consistent
with earlier work based on resting-state magnetic resonance
imaging (MRI) [58] and resting-state functional MRI [23].
Moreover, the disease progression is an important source of
heterogeneity in patients with schizophrenia [59]. From the

results of the MMN-induced brain functional connectivities
between groups (Fig. 3), the FESZ and CSZ groups show
significant differences in connectivity for both the frequency
MMN and the duration MMN. These connectivity differences
are due to differences in the brain functions between the two
groups. Which explains the lager effect size of MMN ampli-
tude in the diagnosis of CSZ than that in FESZ (Table A.9 in
Supplementary Materials) [60].

We also found that the MMN damage in the FESZ and
CSZ groups was associated with the auditory cortex. A pre-
vious study [61] has found that the human auditory cortex
consists of primary and secondary regions, where the pri-
mary auditory cortex is located in the posterior third of the
Heschl gyrus, while the secondary auditory cortex spans a
part of the HES in addition to the posterior part of the
superior temporal gyrus (STG). It has also been found that
the auditory cortex of schizophrenic subjects may be impaired
during adolescence [62]. The results of this study show
that both the frequency MMN and duration MMN in the
FESZ case were negatively impacted in the STG and HES
regions, respectively. This indicated that the auditory MMN
also requires the auditory cortex for information processing.
Indeed, MMN was found to be dependent on the auditory
cortex to create and maintain short-term auditory memory
based on repeated standard stimuli, and then detect deviations
from regular patterns due to deviant stimuli [63]–[65]. This
capability of the auditory cortex is called the “primary auditory
memory,” which was found to be based on the N-methyl-D-
aspartate receptor (NMDAR-like) false prediction response of
the auditory cortex [64], [66]–[68]. Zoological studies [69]
have also confirmed that auditory MMN occurs in the auditory
cortex. Besides, there is a relationship between MMN damage
and auditory cortex dysfunction in schizophrenic subjects.
A brain structural imaging study [70] has also found that
MMN damage in patients with schizophrenia is associated
with thinning of the STG part of the auditory cortex.

By observing brain networks during MMN, we can realize
that dysfunction occurs in the frontal lobe for both FESZ
and CSZ groups compared with the healthy group. This
shows that in the early stages of the schizophrenia process
(i.e. FESZ stage) impairment of the frontal lobe has begun
to emerge. Consistent conclusions are obtained from earlier
studies. [4] This indicates that the frontal lobe damage is a
consistent schizophrenia indicator that could be exploited for
early diagnosis.

Some areas out of the auditory cortex were observed in
this study. In duration MMN of FESZ and frequency MMN
of CSZ, fusiform gyrus was found to involve a large number
of abnormal connectivities. It was also reported a decreased
duration MMN current density of fusiform in FESZ by [71]
and reduced MRI volumes of the fusiform gyrus in CSZ
by [72]. Precuneus, superior occipital gyrus, anterior cingulate
cortex and angular gyrus showed abnormality in this study,
which was reported with reduced current source density in
MMN of schizophrenia by a previous study [73]. In this
study, we also found abnormal insula in the frequency of
FESZ, which was showed gray matter volume abnormalities in
FESZ [25]. The lingual gyrus has not been reported related to
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TABLE III
A COMPARATIVE ANALYSIS REPORT FOR OUR PROPOSED METHOD WITH THE EXISTING METHODS

MMN in schizophrenia, but a significantly increased gyrifica-
tion was observed in FESZ in a right parahippocampal–lingual
cortex area [74].

The brain network classification results during auditory
MMN differ slightly according to whether the partial correla-
tion or the PLI method is used. On the one hand, the mea-
surement of the time-domain partial correlation between two
nodes is different from that of the PLI assessment which
examines the frequency-domain characteristics. On the other
hand, the partial correlation uses the full frequency band
of a signal, while the PLI method exploits frequency sub-
bands. The ERP is believed to be a superimposition of single-
trial oscillations with alpha, beta, theta, delta and gamma
rhythms [75], resulting in information hiding, and lack of
information details for the full frequency band. However, both
partial correlation and PLI methods show different strengths
in identifying large areas of damage in the brain regions of
schizophrenic patients. Practically, any of the two methods or
hybrid methods may be considered.

The GNN classifier shows superior improvements in the
accuracy, recall, precision, F1-score and confusion matrix
in comparison to the SVM classifier. This indicates that
the combination of GNN and brain networks brings better
performance than classical classifiers. This improvement can
be clearly attributed to the superiority of GNN on feature
extraction. Considering the training of the SVM, features that
are taken as the input of the SVM are manually selected
based on previous understanding of the brain network. These
features may not enough in schizophrenia classification. The
GNN, however, could extract enough and useful features for
classification through the back-propagation approach. So that
enough and useful features could be extracted automatically
during training. Since the quality of the features is usually the
key to determine the performance of algorithms, the superior
feature extraction capability makes the GNN have better
performance.

Another prominent improvement factor is that the deeply
cascaded structure of the GNN is helpful to learn the high-level
combination of the features. The deep structure of the GNN

could take the interrelationship among different nodes and
edges of the graph into consideration, so that the complex
relationship underneath and the joint effort of different brain
regions may be discovered. This kind of high-level relationship
may be difficult to be described by formulas, but could be
represented by the non-linear combination of multiple layers in
GNN, and contribute to the final performance of the algorithm.

The highest accuracy of the classifications reached 84.17%
in a single trial five-fold cross-validation test, and the average
of the random ten times five-fold cross-validation test reached
a maximum of 81.33%, both of which were performed by
GNN. Potential classifier inputs were the brain networks as
well as other features including the MCCB cognitive scores,
demographic characteristics, and electrophysiological MMN
features (i.e. the amplitude and the latency). The experimen-
tal results with brain network inputs only returned a lower
accuracy compared to the case when the brain networks
were combined with MCCB features. In addition, we analyze
the results of CZ and HC classifications in this study and
compare our proposed method with the existing methods
in the Table III. Our proposed method yields an accuracy
of 93.33%. In summary, these demonstrate the importance of
augmenting the brain connectivity features with other relevant
features to more accurately identify schizophrenic subjects and
distinguish them from healthy ones.

In this paper, the experimental configuration with the high-
est accuracy is the one in which a GNN classifier is used
with an input of brain networks constructed based on the
delta-frequency band of the duration MMN. For low-frequency
MMN oscillations (<40Hz), a related study [76] found that
the delta-frequency band showed the strongest correlation
with the MMN of schizophrenia. This result is consistent
with our results. Also, as shown in Fig. 4, the PLI values
of the delta-band brain regions of the HC and CSZ groups
are obviously higher than those in the other frequency bands,
while the PLI values of the brain regions for the FESZ
group are relatively low. Therefore, the delta-band features
can separate the three groups more effectively compared to
features of other frequency bands.
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The deviant stimulus type also affects the classification
performance. Classifiers based on the duration MMN achieved
higher accuracies than the frequency MMN ones. This con-
clusion is supported by the results of many studies [7], [11]
which have consistently shown that the duration MMN is
indeed more robust than the frequency MMN in differentiating
schizophrenic and healthy subjects. The MMN performance
and brain functional connectivity results in our study were
also consistent with the MMN latency and amplitude results
of [46].

V. CONCLUSION

In this work, we investigated the brain functional connectiv-
ities underlying the duration and frequency MMN among the
FESZ, CSZ and HC groups. Graph neural networks (GNN)
were applied to MMN-based brain functional networks for
the classification of schizophrenia patients and healthy sub-
jects. Besides, graph-theoretic local and global features were
extracted from brain networks and used to train a SVM for
classifying the three groups. In conclusion, the significantly
different functional connectivities between the CSZ and HC
groups showed more extensively involved brain regions in
comparison to the FESZ-and-HC group pair. The GNN clas-
sifier trained on the brain functional networks achieved an
accuracy of 84.17%, significantly outperforming the SVM
classifier trained on graph-theoretic features (which had a
maximal accuracy of only 69.17%). This demonstrates that
GNN classifiers trained on EEG-based functional networks can
provide clinically-applicable high classification performance
for the FESZ, CSZ and HC groups. For future work, MMN-
based brain networks of ultra-high-risk individuals shall be
exploited towards achieving early schizophrenia diagnosis and
intervention. On the other hand, dynamic brain networks
could be constructed to explore more effective features for
schizophrenia diagnosis.
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sparse hierarchical graph classifiers,” 2018, arXiv:1811.01287. [Online].
Available: http://arxiv.org/abs/1811.01287

[57] D. M. W. Powers, “Evaluation: From precision, recall and F-measure
to ROC, informedness, markedness and correlation,” Oct. 2020,
arXiv:2010.16061. [Online]. Available: http://arxiv.org/abs/2010.16061

[58] M. Lee et al., “Neural mechanisms of mismatch negativity dysfunction
in schizophrenia,” Mol. Psychiatry, vol. 22, no. 11, p. 1585, Feb. 2017.

[59] P. Fusar-Poli, P. Allen, and P. McGuire, “Neuroimaging studies of the
early stages of psychosis: A critical review,” Eur. Psychiatry, vol. 23,
no. 4, pp. 237–244, Jun. 2008.

[60] M. A. Erickson, A. Ruffle, and J. M. Gold, “A meta-analysis of
mismatch negativity in schizophrenia: From clinical risk to disease speci-
ficity and progression,” Biol. Psychiatry, vol. 79, no. 12, pp. 980–987,
Jun. 2016.

[61] R. A. Sweet, K.-A. Dorph-Petersen, and D. A. Lewis, “Mapping auditory
core, lateral belt, and parabelt cortices in the human superior temporal
gyrus,” J. Comparative Neurol., vol. 491, no. 3, pp. 270–289, Oct. 2005.

[62] J. Hill, T. Inder, J. Neil, D. Dierker, J. Harwell, and D. Van Essen, “Sim-
ilar patterns of cortical expansion during human development and evo-
lution,” Proc. Nat. Acad. Sci. USA, vol. 107, no. 29, pp. 13135–13140,
Jul. 2010.

[63] M. I. Garrido, K. J. Friston, S. J. Kiebel, K. E. Stephan, T. Baldeweg, and
J. M. Kilner, “The functional anatomy of the MMN: A DCM study of the
roving paradigm,” NeuroImage, vol. 42, no. 2, pp. 936–944, Aug. 2008.

[64] M. I. Garrido, J. M. Kilner, K. E. Stephan, and K. J. Friston,
“The mismatch negativity: A review of underlying mechanisms,” Clin.
Neurophysiol., vol. 120, no. 3, pp. 453–463, Mar. 2009.

[65] R. Näätänen, M. Tervaniemi, E. Sussman, P. Paavilainen, and I. Winkler,
“‘Primitive intelligence’ in the auditory cortex,” Trends Neurosci.,
vol. 24, no. 5, pp. 283–288, May 2001.

[66] K. Friston, “A theory of cortical responses,” Philos. Trans. Roy. Soc.
London B, Biol. Sci., vol. 360, no. 1456, pp. 815–836, Apr. 2005.

[67] J. Todd, P. T. Michie, U. Schall, P. B. Ward, and S. V. Catts, “Mismatch
negativity (MMN) reduction in schizophrenia—Impaired prediction-
error generation, estimation or salience?” Int. J. Psychophysiol., vol. 83,
no. 2, pp. 222–231, Feb. 2012.

[68] C. Wacongne, J.-P. Changeux, and S. Dehaene, “A neuronal model of
predictive coding accounting for the mismatch negativity,” J. Neurosci.,
vol. 32, no. 11, pp. 3665–3678, Mar. 2012.

[69] T. I. Shiramatsu and H. Takahashi, “Mismatch negativity in rat auditory
cortex represents the empirical salience of sounds,” Frontiers Neurosci.,
vol. 12, p. 924, Dec. 2018.

[70] S. Kim, H. Jeon, K.-I. Jang, Y.-W. Kim, C.-H. Im, and S.-H. Lee, “Mis-
match negativity and cortical thickness in patients with schizophrenia
and bipolar disorder,” Schizophrenia Bull., vol. 45, no. 2, pp. 425–435,
Mar. 2019.

[71] T. Miyanishi, T. Sumiyoshi, Y. Higuchi, T. Seo, and M. Suzuki,
“LORETA current source density for duration mismatch negativity and
neuropsychological assessment in early schizophrenia,” PLoS ONE,
vol. 8, no. 4, Apr. 2013, Art. no. e61152.

[72] P. G. Nestor et al., “Dissociable contributions of MRI volume reduc-
tions of superior temporal and fusiform gyri to symptoms and neu-
ropsychology in schizophrenia,” Schizophrenia Res., vol. 91, nos. 1–3,
pp. 103–106, Mar. 2007.

[73] W. R. Fulham et al., “Mismatch negativity in recent-onset and chronic
schizophrenia: A current source density analysis,” PLoS ONE, vol. 9,
no. 6, Jun. 2014, Art. no. e100221.

[74] C. C. Schultz et al., “Increased parahippocampal and lingual gyrification
in first-episode schizophrenia,” Schizophrenia Res., vol. 123, nos. 2–3,
pp. 137–144, Nov. 2010.
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